394 research outputs found

    Intersecting Knowledge Fields and Integrating Data-Driven Computational Design en Route to Performance-Oriented and Intensely Local Architectures

    Get PDF
    This paper discusses research by design efforts in architectural education, focused on developing concepts and methods for the design of performance-oriented and intensely local architectures. The pursued notion of performance foregrounds the interaction between a given architecture and its local setting, with consequences not only for the design product but also for the related processes by which it is generated. Integrated approaches to data-driven computational design serve to generate such designs. The outlined approach shifts the focus of design attention away from the delivery of finite architectural objects and towards an expanded range of architecture-environment interactions that are registered, instrumentalised and modulated over time. This paper examines ongoing efforts in integrating specific architectural goals and approaches, computational data-driven design methods and generative design processes, based on a range of context-specific and often real-time data sets. The work discussed is produced in the context of the Research Centre for Architecture and Tectonics (RCAT) and the Advanced Computational Design Laboratory (ACDL) at the Oslo School of Architecture and Design

    Amplified graph C*-algebras

    Full text link
    We provide a complete invariant for graph C*-algebras which are amplified in the sense that whenever there is an edge between two vertices, there are infinitely many. The invariant used is the standard primitive ideal space adorned with a map into {−1, 0, 1, 2,...}, and we prove that the classification result is strong in the sense that isomorphisms at the level of the invariant always lift. We extend the classification result to cover more graphs, and give a range result for the invariant (in the vein of Effros–Handelman–Shen) which is further used to prove that extensions of graph C*-algebras associated to amplified graphs are again graph C*-algebras of amplified graphs

    Effects of green manure storage and incorporation methods on greenhouse gas fluxes and N mineralization after soil application

    Get PDF
    Organic arable farming faces challenges with low crop yields, partly due to inefficient use of green manure-derived nitrogen (N). Under current farming practices, green manure leys are often cut and mulched during the growing season with the associated risk of environmental N losses, leading to eutrophication and global warming. In this 3-month incubation experiment, we tested a new green manure management strategy as part of the ICROFS project HighCrop. With the new strategy, green manure leys are instead harvested and preserved until the following spring either as compost mixed with straw (grass-clover:straw, 4:1, w:w) or as silage of harvested ley biomass. In spring, these two green manure materials can then be used for targeted fertilization of spring sown crops. The objectives of the study were to: • Assess how storage methods (compost vs. silage) affect N2O fluxes and soil respiratory CO2 emissions after soil application of preserved grass-clover green manure. • Determine whether the greenhouse gas fluxes are influenced by the incorporation method, more specifically harrowing (simulated by mixing the material into the top 5 cm soil layer) and ploughing (the material placed at 15 cm depth). • Compare composted and ensiled green manures concerning their abilities to provide plant-available N during a 3-month period. During the experiment, gas fluxes were measured at nine occasion followed by eight destructive soil harvests. In total, the study included 192 soil units that were incubated at 15 °C in darkness. Each unit consisted of a packed soil core (26 cm high × 10 cm diameter) with bulk density of 1.07 g cm-3 and gravimetric soil moisture of 20 %. The addition of compost and silage corresponded to a fertilization rate of 120 kg total N ha-1. A mineral fertilizer treatment was included as a reference and received 80 kg NH4-N ha-1. Compared to the more degraded compost, the silage material had a high content of labile compound. In addition, incorporation of green manure by harrowing was expected to improve soil microbes’ access to the materials, and thereby increase the decomposition rate. In line with this, cumulative CO2 emissions from the green manure treatments was lowest for compost incorporated by ploughing and highest for silage incorporated by harrowing. Between 32 and 54 % of the added green manure carbon was respired as CO2 during the 3-month experiment. Interestingly, mineral fertilizer suppressed soil respiratory CO2 emission. Generally, N2O emissions were higher from the silage-amended soils than from soils fertilized with compost. Especially, silage incorporated by ploughing gave rise to increased N2O effluxes, corresponding to 0.3 % of applied total N during the 3-month period. This could partly result from denitrification of initial soil nitrate, stimulated by high local oxygen consumption in the labile silage layer. In contrast, compost incorporated by harrowing caused a downwards N2O flux into the soil, presumably an effect of lacking mineral N availability in this treatment. Overall, our study showed that emissions of N2O can be reduced by incorporating green manure using harrowing instead of ploughing. Net mineralization of green manure-derived N was absent until more than three weeks after incorporation of the materials. Over the 3-month experiment, grass-clover silage provided the highest net release of inorganic N with preliminary results corresponding to 38-43 kg N ha-1, irrespective of the incorporation method used. In contrast, no increase in soil mineral N was observed for the composted grass-clover and straw mixture compared to the unfertilized control soil. In fact, soil incorporation of compost by harrowing caused immobilization of soil mineral nitrogen 1-2 months after experimental set-up

    KløvergrÌs ensilage og kompost som grøngødning

    Get PDF
    En ny strategi kan müske forbedre udnyttelsen af det kvÌlstof, som fikseres af kløverplanter i økologisk planteavl. Vores studie viste en større frigivelse af kvÌlstof fra ensileret kløvergrÌs end fra kompost af kløvergrÌs iblandet halm. Samtidig fandt vi, at indarbejdning af grøngødning ved harvning frem for pløjning reducerede udledningen af den stÌrke drivhusgas, lattergas

    Nitrogen mineralization and greenhouse gas emissions after soil incorporation of ensiled and composted grass-clover as green manure

    Get PDF
    This 3-month incubation study showed that ensiled grass-clover was a better nitrogen (N) source than a composted grass-clover and straw mix (grass-clover:straw, 4:1, w:w), owing to the high content of labile compounds compared to the more degraded compost. Our study also indicated that emissions of the strong greenhouse gas nitrous oxide (N2O) can be reduced by incorporating green manure using harrowing instead of ploughing. The silage-derived N release by the end of the incubation was equivalent to 38-42 kg N ha-1, which corresponded to one third of the N applied in silage, with no difference between ploughing and harrowing. In contrast, no net release of mineral N was detected from the composted grass-clover

    Real-time interferometric refractive index change measurement for the direct detection of enzymatic reactions and the determination of enzyme kinetics

    Get PDF
    Back scatter interferometry (BSI) is a sensitive method for detecting changes in the bulk refractive index of a solution in a microfluidic system. Here we demonstrate that BSI can be used to directly detect enzymatic reactions and, for the first time, derive kinetic parameters. While many methods in biomedical assays rely on detectable biproducts to produce a signal, direct detection is possible if the substrate or the product exert distinct differences in their specific refractive index so that the total refractive index changes during the enzymatic reaction. In this study, both the conversion of glucose to glucose-6-phosphate, catalyzed by hexokinase, and the conversion of adenosine-triphosphate to adenosine di-phosphate and mono-phosphate, catalyzed by apyrase, were monitored by BSI. When adding hexokinase to glucose solutions containing adenosine-triphosphate, the conversion can be directly followed by BSI, which shows the increasing refractive index and a final plateau corresponding to the particular concentration. From the initial reaction velocities, KM was found to be 0.33 mM using Michaelis⁻Menten kinetics. The experiments with apyrase indicate that the refractive index also depends on the presence of various ions that must be taken into account when using this technique. This study clearly demonstrates that measuring changes in the refractive index can be used for the direct determination of substrate concentrations and enzyme kinetics

    Current strategies for mobilome research

    Get PDF
    Mobile genetic elements (MGE) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of MGEs is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery
    • …
    corecore